Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits
نویسندگان
چکیده
We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories.
منابع مشابه
Lesions of the basal amygdala block expression of conditioned fear but not extinction.
Although the role of the amygdala in acquisition of conditioned fear is well established, there is debate concerning the intra-amygdala circuits involved. The lateral nucleus of the amygdala (LA) is thought to be an essential site of plasticity in fear conditioning. The LA has both direct and indirect [via the basal nuclei; basal amygdala (BA)] projections to the central nucleus (Ce) of the amy...
متن کاملFear Learning Regulates Cortical Sensory Representations by Suppressing Habituation
Projections from auditory cortex to the amygdala are thought to contribute to the induction of auditory fear learning. In addition, fear conditioning has been found to enhance cortical responses to conditioned tones, suggesting that cortical plasticity contributes to fear learning. However, the functional role of auditory cortex in the retrieval of fear memories is unclear and how fear learning...
متن کاملA Neural Switch for Active and Passive Fear
The central nucleus of the amygdala (CeA) serves as a major output of this structure and plays a critical role in the expression of conditioned fear. By combining cell- and tissue-specific pharmacogenetic inhibition with functional magnetic resonance imaging (fMRI), we identified circuits downstream of CeA that control fear expression in mice. Selective inhibition of a subset of neurons in CeA ...
متن کاملMechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala.
The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is critically involved in fear conditioning. To addre...
متن کاملNitric Oxide Signaling Exerts Bidirectional Effects on Plasticity Inductions in Amygdala
It has been well known that long-term potentiation (LTP) of synaptic transmission in the lateral nucleus of the amygdala (LA) constitutes an essential cellular mechanism contributing to encoding of conditioned fear. Nitric oxide (NO), produced by activation of the postsynaptic N-methyl-D-aspartate receptors (NMDAR) in thalamic input to the LA, has been thought to promote LTP, contributing to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 90 شماره
صفحات -
تاریخ انتشار 2016